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It is shown that the eigenvalues Ei of a Hermitian matrix H with matrix elements Hij = Z&A& where 
A: are known numbers and ak a set of parameters, can be exactly expanded as Ei = &(kEi/aak)ak. This 
property is applied to the analysis of the optical spectra of transition metal ions in crystals proposed by 
L. Pueyo, M. Bermejo, and J. W. Richardson (J. SolidState Chew. 31,217,1980), and it is shown that 
this method represents the best fit of the Hamiltonian eigenvalues to the observed (or calculated) 
spectrum. Further advantages of using this property, in connection with the spectral analysis, are the 
minimization of the errors associated with the numerical approximations and a reduction in computer 
time. In the molecular orbital calculation of the optical or uv spectra of these systems, this linear 
expansion of the eigenvalues give a detailed interpretation of the improvements produced by refined 
calculations, such as those including configuration interaction. In particular, the changes in one- 
electron energy and in open-shell repulsion interactions associated with the refinement can be clearly 
and easily formulated. As examples, the computed spectra of CrE- and CrFi- are discussed. o i9ss 
Academic Press, Inc. 

1. Introduction 
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In this paper we derive an interesting 
property of the Hermitian matrices H 
whose elements are linear combinations of 
a given set of parameters ak: Hij = &Abak, 
where A$ are known numbers. This sort of 
matrix is often found in quantum mechani- 
cal calculations where a successive pertur- 
bation approach is followed. Crystal-field 
theory is a familiar example. We will show 
that the eigenvalues ZZi of these Hermitian 
matrices can be exactly expanded as Ei = 
&(dEi/&Z&Zk. The partial derivatives of the 
eigenvalues with respect to the parameters 
are implicit functions of all ak. These deriv- 

atives can be analytically and very quickly 
found in terms of the unitary matrix that 
diagonalizes H. 

We have applied this property to a vari- 
ety of spectroscopic calculations of the op- 
tical spectra of transition metal ions in ionic 
lattices. We will present here two types of 
applications, one in the context of the em- 
pirical analysis of the optical spectra and 
the other one related to the nonempirical 
calculation of the transition energies. 

The first application is the incorporation 
of the property into the systematic matrix 
linearization procedure recently described 
(I, 2). In these procedures, the Hamilto- 
nian matrix H has to be diagonalized NPAR 
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+ 1 times at each iteration (NPAR is the tains a better transition energy from the re- 
number of independent parameters in the fined calculation but the detailed differ- 
problem) in order to compute numerically ences between the first-order and the 
the first derivatives of the eigenvalues with refined description are not generally clear. 
respect to all the parameters. Using the for- The application of the method described 
mulation of this paper, all these derivatives here represents a simple operation that 
are computed analytically at each iteration gives an interesting insight on the changes 
by means of a simple matrix multiplication. that the methodological refinements pro- 
The computer time is significantly reduced, duce in one- and two-electron interactions. 
since one has to diagonalize H only once at Thus, with very little calculation one can 
each iteration. This represents a noticeable appreciate the degree of electronic delocali- 
improvement of the linearization process, zation among orbitals of different symme- 
with larger economies in computer time in- tries, and the corresponding changes in 
creasing with the number of independent open-shell electronic repulsion, accompa- 
parameters and the rank of H. Further- nying the process of refinement. In particu- 
more, using this relationship between the lar, our calculation makes straightforward 
eigenvalues and the parameters, it is imme- the possibility of expressing the d-d elec- 
diately shown that the iterative lineariza- tronic transitions, in a CI or CI + CEC cal- 
tion procedure is a general method for a culation, as linear functions of the 10 inde- 
least-squares fitting of the eigenvalues of a pendent repulsion integrals (5). The 
matrix to a given set of numbers. advantages of using such integrals instead 

The second application has to do with the of the familiar B and C Racah parameters 
calculation of the electronic transition ener- are well-known and have been recently dis- 
gies in terms of molecular orbital theory. cussed by Sharma et al. (6). 
Once the wavefunction of a given elec- In Section 2 we give the proof of the lin- 
tronic state is obtained, one can compute, ear expansion of the eigenvalues of a Her- 
within the frozen-orbital approximation, mitian matrix. In Section 3 we show how 
the first-order transition energies among this property can be connected with the it- 
different states. A better description of erative linearization procedures. The appli- 
these energies is generally found (3) if some cation of the linear expansion to the molec- 
amount of configuration interaction (CI) is ular orbital calculations is presented in 
included in the calculation. A still better Section 4 and the last section contains some 
representation can be obtained if one con- selected examples which illustrate the ap- 
siders the empirical correlation energy cor- plications . 
rection (CEC) that propagates into the mo- 
lecular system the atomic corrections 2. Linear Expansion of the Eigenvalues 
required to have an exact description of the OfH 
multiplet energies (4). In these refined 
spectroscopic calculations different Hermi- 

Let us consider the Hermitian matrix: 

tian matrices (the CI matrix, the CI + CEC H = &Akak, (1) 
matrix, etc.) are used, and the transition 
energies are obtained as differences be- 

where the Ak’s are known matrices deter- 

tween eigenvalues. As a consequence, the 
mined by the symmetry of the problem and 

evaluation of the contributions of different 
the ak’s are parameters. 

interactions to the final value of the transi- 
In this section we will show that the ei- 

tion energy is not as immediate as it is in the 
genvalues of H, Ei, can be expressed as 

first-order calculation. In this way, one ob- Ei = Z~(aEilaa~)a~ = Xmikak. (2) 
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We will also present a simple, analytical The matrix elements aik are obtained 
method for obtaining the expansion coeffi- through a similarity transformation of the 
cients aik. These are implicit functions of all matrix Ak (Eq. (9)), in terms of the matrix U 
the ak’s. that diagonalizes H. 

Since H is Hermitian, we can reduce it to 
diagonal form by means of a similarity 
transformation 

E = UtHU = c UtA’TJak (3) 
k 

with 

3. Application to Iterative Linearization 
Procedures 

utu = uut = 1. (4) 

We now define the matrices & 

(d);j = (~EijltkQ). (5) 

These matrices are diagonal because E is 
diagonal and their nonvanishing elements 
are 

(l&i = (dEJ&Zk). (6) 

Inserting Eq. (3) in Eq. (5) and defining 
Uk as (Uk)ij = (auij/dak) we have 

a+ = (Uk)tHU + UtA“U + UtHUk. (7) 

From Eqs. (3) and (4) we have HU = UE 
and UtH = EUt. These results transform 
Eq. (7) into 

In the method of systematic linearization 
of the electrostatic matrices (1) and (2), it is 
assumed that the eigenvalues of the Hamil- 
tonian matrix satisfy Eq. (2). The best ap- 
proximations to (Yik and ak are obtained by 
an iterative calculation in which some ini- 
tial values of the ak’s are used to estimate 
the (Yik’s by numerical calculation of the first 
derivatives: 

ff& = {Ei(ai, . . . , ak + 6ak, . . .) 
- &(a, . . . ak . . .)}/6ak 

2: (dEi/&Zk),j+k. (11) 

These (Yik’s give a new Set of ak’s through 
a least-squares fitting of Eq. (2) to a set of 
known eigenvalues EP. The procedure is it- 
erated until convergence in ak and (Ilik is 
reached. 

cuk = (Uk)tUE + UtAkU + EUtUk. (8) 

Since E is diagonal we readily find that 

((Uk)tUE)ii = (E(U“)tU)ii 

and, therefore, the diagonal elements of (yk 
become 

(&)ii = (UtAkU), + (E{(Uk)tU 

+ UtU“})ii = (UtAkU)ii (9) 

because the term in braces is zero, due to 
Eq. (4). 

Using Eq. (9), we can write, from Eq. (3): 

E = c ffkak. (10) 
k 

The results of Section 2 show that Eq. (9) 
is a better and faster procedure for obtain- 
ing the (Yik’s. In the linearization method 
one has to perform, at each iteration, 
NPAR + 1 diagonalizations of H (NPAR = 
number of independent parameters, ak) to 
compute the approximate derivatives 
through Eq. (11). The computer time will be 
greatly reduced if we diagonalize H only 
once at each iteration, obtain U and com- 
pute all the (Yik’s accurately via Eq. (9). Nat- 
urally, the advantages of this alternative 
calculation will increase with the number of 
parameters and with the rank of H. 

If we define the matrix (Y as (Yik = (&)ii we 
have 

(2) 

Now suppose we were interested in ob- 
taining the Vahes of the parameters ak’s 
that better reproduce a set of known eigen- 
values EP of a Hermitian matrix H. Since 
we know that Eq. (2) holds, we would like 
to use it for our purpose. We should have to 
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minimize the root mean square deviation 
between our computed Ei and the EP and, 
therefore, the following linear least-squares 
equations should be solved: 

Zi2l[O&(Yi,Uf = EiEPUik e (12) 

However, the coefficients (Yik are very in- 
volved functions of the ak’s and an iterative 
procedure is possibly the best solution, 
namely: (i) selection of some initial values 
of &, (ii) calculation of H, via Eq. (l), (iii) 
obtaining of U by diagonalization of H, Eq. 
(3), (iv) calculation of a&, Eq. (9), and (v) 
calculation of the new &, Eq. (12). But this 
is exactly the improved version of the line- 
arization procedure proposed in this work. 
We conclude, then, that the linearization 
calculation of Ref. (I) represents a general 
method for fitting the eigenvalues of a Her- 
mitian matrix to a set of known values EP. 

4. Application to Molecular Orbital 
Calculation of the Electronic Spectra 

Although the arguments below can be ap- 
plied to any electronic transition, we will 
discuss the d-d transitions in particular. 

Following the methodology of Richard- 
son et al. (3), we can write the ith d-d tran- 
sition as 

AE(i; dia) = n(i; dia) AH’ 

+ &$(i, k; dia)&, (13) 

where the term dia holds for the first-order 
or diagonal calculation, n(i) is the number 
of d electrons involved in the transition, 
AH’ the increment in effective one-electron 
energy, zk the independent two-electron in- 
tegrals chosen to describe the open-shell re- 
pulsion energy of the multielectronic states, 
and b(i, k) are numerical constants. 

When we improve the diagonal descrip- 
tion with some amount of CI, the influence 
of the zk’s into the refined value of the tran- 
sition is very hard to ascertain, due to the 
appearance of linear contributions of these 

repulsion integrals in the off-diagonal ele- 
ments of the CI matrix. Application of Eq. 
(2), however, allows us to write 

AE(i; CI) = n(i; CI) M’ 
+ &b(i, k; CI)&, (14) 

where the term CI indicates the inclusion of 
this refinement, and the coefficients n(i; CI) 
and b(i, k; CI) are computed through Eq. 
(9). Equation (14) gives interesting informa- 
tion on the degree of electronic delocaliza- 
tion (through n(i; CI)) arising from the in- 
clusion of CI. Also, the b(i, k; CI) 
coefficients show the contribution of the 
1,“s to A,!?. 

It is clear that the same can be said about 
the effects of other refinements introduced 
as additive matrices to the unrefined Hamil- 
tonian. The spin-orbit interaction, the Ra- 
cab-Trees correction (7), and the empirical 
correlation energy correction, CEC (4) are 
examples of this type of refinement. The 
CEC matrix elements do not contain pa- 
rameters but it is useful to consider them as 
products: 

(CEC)U = (CEC)ijc(CEC), (15) 

where LJCEC) is a “CEC parameter” with 
value unity. Then, the CI + CEC calcula- 
tion gives the linear expression: 

AE(i; CI + CEC) = n(i; CI + CEC) AH’ 
+ &b(i, k; CI + CEC)& 

+ c(i; CI + CEC){(CEC). (16) 

It is convenient to note that the parame- 
ters Ai?I’ and zk maintain their values in go- 
ing from Eq. (13) to Eqs. (14) and (16). 
These values are obtained from a given 
SCF calculation and yield different estima- 
tions of AE(i) because the linear coefficients 
n(l) and b(i, k), computed with Eq. (9), are 
different in each case. This situation con- 
trasts with the one found in the lineariza- 
tion scheme, where different linearizations 
(such as those with and without CI) pro- 
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TABLE I 

LINEAR COEFFICIENTS AND PARAMETERS FOR SOME ELECTRONIC TRANSITIONS OF CrG- COMPUTED AT 
R(Cr-F) = 3.59 a.u. (1.90 A) 

Repulsive interactions: 
Parameters I’:’ 

Coefficients 
AH’ 

n, 

Transition 5Ep 
+ a'E, 0. 0. 0. 0. 0. 4. 0. 0. 0. 0. 0. - 

0.016 -0.073 0.121 1.084 0.016 4.733 0. - I.914 -0.382 0.032 -0.032 - 
O.OiK -0.028 0.046 1.094 0.006 4.792 0. -1.923 -0.234 0.012 -0.012 -5.01 
OSQ9 -0.038 0.064 1.093 0.009 4.776 0. -1.921 -0.276 0.017 -0.017 -3.66 

-+ b"TI, 0. -1.5 4.5 -2. 0. 1.5 0. -0.5 0. 0. 0. - 
0.007 -1.498 4.468 -1.542 -1.411 1.890 1.408 -0.905 -0.316 0.011 0.011 - 
0.007 -1.510 4.489 -1.582 -1.374 1.981 1.381 -0.981 -0.272 0.006 0.002 -5.89 
0.007 -1.509 4.487 -1.575 -1.382 1.950 1.388 -0.957 -0.283 o.cQ7 0.003 -4.32 

+ a'TzB 0. -1.5 4.5 -2. 0. 0.5 0. 0.5 0. 0. 0. - 
0.026 -1.538 4.471 - I.462 -1.448 1.358 1.467 -0.432 -0.437 0.033 -0.009 - 

0.011 -1.516 4.487 -1.4% -1.465 1.402 1.474 -0.442 -0.309 0.012 -0.002 -6.33 
0.014 -1.520 4.484 -1.486 -1.465 1.388 1.476 -0.440 -0.341 0.016 -0.003 -4.62 

-+ &AZ, 0. 0. 0. 3. 0. 0. 0. 1. 0. 0. 0. - 
0.097 -0.439 0.731 2.708 0.097 0.097 0. 0.903 -4.109 0.195 -0.195 - 
0.073 -0.330 0.550 2.780 0.073 0.073 0. 0.927 -3.612 0.147 -0.147 -7.11 
0.078 -0.352 0.586 2.766 0.078 0.078 0. 0.922 -3.719 0.156 -0.156 -5.19 

ParametersIlO) (cm-‘) 9.60 165.65 62.79 6.81 165.21 5.86 161.04 7.91 1.77 171.57 93.86 1 

Note. The four rows associated with each transition correspond to the diagonal, CL CI + CEC, and Cl + CECd calculations, respectively. 
a Defined in Ref. (3) 

duce different values of the parameters and 
linear coefficients. 

5. Two Examples: The Optical Spectra of 
C&- and C&- 

In this section we discuss the application 
of Eqs. (13), (14), and (16) to the theoretical 
spectrum of two complex ions whose elec- 
tronic structures were computed with the 
methodology of Richardson et al. (3). The 
basic Hartree-Fock calculations and the 
theoretical transition energies were given 
before (8, 9). These theoretical spectra 
were related to the optimum values of the 
crystal-field parameters B and C (1, 8, 9). 
Here we will present their linear expansion 
in terms of AH’ and the 10 independent re- 
pulsion integrals defined by Richardson et 
al. (3). 

In Table I we present the SCF parame- 
ters and the linear coefficients for the lower 

quintet-triplet d-d transitions of CrG- 
computed at first-order, with CI limited to 
the d4 configuration, with CI + CEC and 
with CI + CEDd. The CECd is the delocal- 
ized CEC and it incorporates, in part, the 
effects of the metal-ligand mixing (4). 

These spin-forbidden transitions belong 
to the configuration of the ground state, 
which explains the small value of the num- 
ber of electrons, n(i), involved in these 
transitions. This number, which is exactly 
zero in the first-order calculation, increases 
to 0.01-0.1 by the action of configurational 
mixing. CEC does not produce a significant 
effect on n(i). 

The effects of the refinements on the na- 
ture of these transitions are particularly 
clear. For instance, the 5Eg + 3Eg transition 
is due, according to the first order calcula- 
tion, to a pure change in the rz,-e, open- 
shell repulsion. The CI description shows 
the significant contributions of the t~-t~ 
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TABLE II 

EFFECTIVE MONOELECTRONIC, BIELECTRONIC, AND CEC CONTRIBUTIONS (IN UNITS OF 10’ cm-‘) TO THE 
ENERGIES OF THE TRANSITIONS IN TABLE I 

Transition 
t3e-5E, 

Effective 
one-electron 

energy 

Two-electron energy 

t-t t-e e-e 

One- + 
two-electron 

energy CEC Total 

+ a3E, 0. 0. 23.44 0. 23.44 - 23.44 
0.15 2.95 14.58 2.51 20.19 - 20.19 
0.06 5.75 13.48 0.96 20.25 -5.01 15.24 
0.08 5.10 13.71 1.32 20.21 -3.66 16.55 

+ b3T,, 0. 20.46 4.84 0. 25.30 - 25.30 
0.06 21.94 -3.02 1.98 20.96 - 20.96 
0.07 20.90 -1.27 1.24 20.94 -5.89 15.05 
0.07 20.96 -1.43 1.36 20.96 -4.32 16.64 

+ a3Tz8 0. 20.46 6.89 0. 27.35 
0.24 15.94 0.87 4.81 21.86 
0.10 20.42 -0.49 1.94 21.97 
0.13 19.56 -0.31 2.55 21.93 

+ a3A2, 0. 20.43 7.91 0. 28.34 
0.94 -8.31 16.53 15.15 24.31 
0.70 -1.20 13.48 11.40 24.38 
0.75 -2.62 14.09 12.15 24.37 

- 27.35 
- 21.86 

-6.33 15.64 
-4.62 17.31 

- 28.34 
- 24.31 

-7.11 17.27 
-5.19 19.18 

Note. The four rows have the same meaning as in Table I. 

and eBeg interactions to this transition. 
Moreover, integrals that have no_, effect in 
the diagonal description, as like J(tt) in the 
+3A2g transition, become very important 
after CL 

In Table II we have collected the differ- 
ent contributions to the transition energy in 
CrG-. We observe that the change in effec- 
tive one-electron energy (one-electron en- 
ergy plus the interaction with the closed 
shells (3)) makes an insignificant contribu- 
tion to the final value of these transitions. 
The partition into f~-&,, tzg-eg, and eg-eg 
contributions is very different after CI. 
From the numbers in Table II we can have a 
quantitative insight on the effects of the 
configurational mixing (within the 3d4 con- 
figurations). 

The fifth column in Table II shows that 
no matter how the open-shell repulsion is 
distributed among the different interac- 
tions, the contribution of the total repulsion 

to the transition energies decreases after 
CI. This is a much more important effect 
than the increase in the one-electron energy 
contribution and illustrates that in these 
lower transitions configurational mixing 
amounts to a redistribution of the electronic 
charge in the direction of minimizing the 
repulsion. This ought to be so because (a) 
the ground state of CrFd- is unaffected by 
the CI considered here (8) and (b) this re- 
finement reduces the repulsion energy of 
the lower-energy states involved in the CI 
matrices. 

The effects of the CEC are also of inter- 
est. This correction has a double action on 
the transition energy. First, it alters the 
mixing coefficients of the configurational 
states. Second, it incorporates a new term 
in the Hamiltonian. The changes in the 
wavefunction are already included in the 
fifth column of Table II. The second factor 
is presented in column six. It is clear from 



+ t’-2E 8 

-+ t3-2T Ig 0. 20.11 0. 0. 20.11 - 20.11 
0.79 9.38 8.28 0.76 19.21 - 19.21 
0.57 12.73 5.10 0.85 19.25 -3.13 16.12 
0. 20.05 0. 0. 20.05 - 20.05 
0.77 10.13 7.60 0.69 19.19 - 19.19 
0.55 13.28 4.63 0.78 19.24 -3.14 16.10 

0. 20.11 0. 0. 20.11 - 20.11 
0.89 8.34 8.55 0.50 18.28 - 18.28 
0.71 10.79 6.53 0.29 18.32 -3.22 15.10 
0. 20.05 0. 0. 20.05 - 20.05 
0.90 8.82 8.11 0.43 18.26 - 18.26 
0.71 11.21 6.14 0.25 18.31 -3.23 15.08 

+ t2e-‘T,, 22.03 -309.2 317.7 0. 30.53 - 30.53 
26.05 -337.4 312.0 27.04 27.74 - 27.74 
24.30 -325.1 313.5 15.27 27.94 -1.72 26.22 
23.30 -308.5 316.6 0. 31.35 - 31.35 
27.14 -333.9 311.2 24.32 28.74 - 28.74 
25.43 -322.7 312.6 13.53 28.93 -1.78 27.15 

-+ t2e-4T2,a 22.03 -309.2 305.7 0. 18.51 - 18.51 
23.30 -308.5 304.6 0. 19.38 - 19.38 
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TABLE III 

EFFECTIVE MONOELECTRONIC, BIELECTRONIC, AND CEC CONTRIBUTIONS (IN UNITS OF 10’ cm-l) TO SOME 
TRANSITION ENERGIES OF CrFz- in Vacua AND IN K,NaCrF6 

Transition 
C4A 28 

Effective 
one-electron 

energy 

Two-electron energy 

t-t t-e e-e 

One- + 
two-electron 

energy CEC Total 

Note. For each transition, rows 1, 2, and 3 correspond to the diagonal, CI, and CI + CEC calculations on 
CrF:- in vucuo. Rows 4,5, and 6 have the same meaning for CrF:- in K2NaCrF6. 

0 This state does not suffer CI within the d3 configurations; first row is the diagonal, in vacno calculation, and 
second row the diagonal calculation for CrF:- : K2NaCrF,. 

these numbers that the perturbation of the 
CEC on the wavefunction is a rather minor 
effect, the correction to the Hamiltonian 
being the essential feature. In the free-ion 
the last correction is, by definition, the full 
CEC effect. From Table II we learn that 
this is almost the case in the complex ion. 

As a second example, we present in Ta- 
ble II the information corresponding to 
CrFi- . We include results from calculations 
on CrFz- in uucuo and in the lattice of 
K2NaCrF6 (10). In this cluster the intra- 
configurational transitions 4A2g --, 2Eg, *Tlg 
suffer, by the action of CI, an increment in 
the one-electron energy larger than that 
seen in CrG-. As in the last cluster, how- 

ever, the repulsion energy is the main con- 
tribution to AE. CI reduced this repulsion 
by several units of lo3 cm-l. The effects of 
the lattice potential on these transitions are 
uniformly small. 

It is interesting to observe the differences 
between an intraconfigurational transition, 
as that to *Eg, and an interconfigurational 
one, as that to 4Tls or 4T2g. In the second 
type of transition the one-electron energy is 
a very significant portion of the transition 
and the increment due to the CI is quite 
substantial, too. The changes in repulsion 
energy are very large due to the change in 
population, but the tzg-tzg and tzg-e, terms 
almost cancel out, giving rise to a total con- 
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tribution of the two electron energy smaller 
than that from AH’. In these transitions the 
effects of the external lattice are also more 
appreciable. 

Finally, we would like to remark that the 
information collected in Tables I, II, and III 
is considerably more detailed than that de- 
ducible from the values of the B and C pa- 
rameters. We have now a deeper physical 
insight on the nature of the transition en- 
ergy. Such information is immediately ac- 
cessible once the SCF calculation has been 
carried out. Furthermore, if the number of 
observed electronic transitions is adequate, 
all this information can be obtained through 
a systematic linearization in terms of the 10 
independent repulsion integrals, since the 
appropriate matrix elements are available 
(0 
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